

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2013

GCE CHEMISTRY - CH2

JANUARY 2013 MARK SCHEME

SECTION A

Q.1		Calcium – Bones, teeth, muscle contraction. Magnesium – chlorophyll, activation of ATP. (Both for 1 mark)				
Q.2	4,4-dimethylpentan-1-ol (1)					
Q.3	(a)	Ability of atom to attract electrons <u>in a</u> covalent <u>bond</u> towards itself.	[1]			
	(b)	δ- F-Cl $δ$ + $δ$ + At-Cl $δ$ - Both needed for mark	[1]			
Q.4	CH ₂ (A	H ₂ (Accept H ₂ C)				
Q.5	(a)	С	[1]			
	(b)	В	[1]			
Q.6	Both O_2 and O_3 have oxidation states of zero (1) No change in oxidation state (1)					
Q.7	Reversible change in properties when conditions change.					

Total Section A [10]

SECTION B

Total [15]

Q.9	(a)	(i)	ultraviolet / sunlight	[1]		
		(ii)	A species with an unpaired electron.	[1]		
	(b)		$Cl \bullet \rightarrow CH_3 \bullet + HCl (1)$ $Cl_2 \rightarrow CH_3 Cl + Cl \bullet (1)$	[2]		
	(c)	(i)	Two CH₃• radicals combine (in a termination reaction).	[1]		
		(ii)	$24.3 \div 12 = 2.025$ for C $4.1 \div 1.01 = 4.059$ H $71.6 \div 35.5 = 2.017$ CI (1) CH ₂ CI (1)	[2]		
	(d)	(i)	Nucleophilic substitution	[1]		
		(ii)	Methanol has hydrogen bonding between molecules (1) Chloromethane has van der Waals forces / dipole-dipole forces between molecules (1) Hydrogen bonding is stronger than Van der Waals/dipole-dipole (1)	[3]		
		(iii)	Acidified potassium dichromate / acidified potassium manganate(VII) (1) Heat /warm (1) (Need correct reagent to gain heat mark)	[2]		
	(e)	Compounds B and C are stable enough to reach the ozone layer OR Compound D would not reach the ozone layer as it would decompose in the lower atmosphere. (1)				
		(The C-Cl forms) Cl• which will decompose the ozone. (1)				
		•	und A does not contain chlorine, (so it cannot form Cl•) / Compound A has	s a		

Total [16]

[3]

- Q.10 (a) BCl₃ is trigonal planar or clear diagram.
 - NCl₃ is pyramidal or clear diagram.
 - BCl₃ has 3 bonded pairs
 - NCl₃ has 3 bonded pairs
 - NCl₃ has a lone pair
 - BCl₃ has no lone pair
 - Electron pairs repel to be as far from each other as possible / position of minimum repulsion.
 - Lone pairs repel more than bonded pairs.

First two points and any other 4 for (1) each up to 6 max

• QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter.[1]

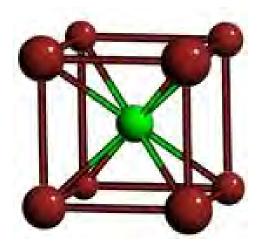
•

 QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning.[1]

(b)

accept crosses and dots exchanged (1)

Electron deficient: outer shell of boron has less than 8 electrons / is not full.(1) [2]


- (c) NH₃ can form hydrogen bonds with water molecules (so it dissolves) (1) NCl₃ cannot form hydrogen bonding. (1) [2]
- Covalent has a pair of shared electrons one from each atom (1)
 - Coordinate has a pair of shared electrons both electrons from same atom (1)

[2]

[6]

Total [14]

Q.11 (a) (i)

Clear 8 coordination number (1)
Labels of both Cl⁻ and Cs⁺ (either way round) (1)

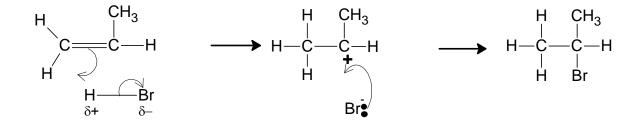
[2]

[3]

- (ii) Cs⁺ ion larger than Na⁺ so can have a larger coordination number. [1]
- (b) (i) Any three from the following for (1) each up to 3 max can gain these from labelled diagram
 - Layers of carbon atoms.
 - Hexagons of carbon atoms / each carbon bonded to three others.
 - Weak forces between layers.
 - Delocalised electrons above and below plane.

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate. [1]

- (ii) Delocalised electrons in graphite can move to carry a current (1)
 Diamond has no delocalised electrons (1) [2]
- (iii) Van der Waals forces between molecules need to be broken to form iodine gas (1)


Covalent bonds need to be broken to form a gas from diamond/graphite (1)

Van der Waals forces are much weaker than covalent bonds (1)

[3]

Total [12]

- Q.12 (a) (i) Molecules with different numbers of carbon atoms have different boiling points. [1]
 - (ii) Any suitable reaction, e.g. $C_{10}H_{22} \rightarrow C_4H_8 + C_6H_{14}$ [1]
 - (b) (i) Turns from orange to colourless (no credit for 'red') [1]
 - (ii) (1) for arrows in first diagram; (1) for arrow in second diagram; (1) for all charges.

[3]

- (iii) Ethanol OR Alcohol solution / Heat both required [1]
- (c) (i) Restricted rotation about double bond in but-2-ene but not butane (1)

2 groups attached to each carbon of the double bond are different in but-2-ene but in propene one carbon has the same two groups attached (1) [2]

(ii)

Accept any valid representation

[1]

- (d) (i) Steam, phosphoric acid catalyst, (1) 300°C, 70 atm pressure (1) [2]
 - (ii) Butan-2-ol will have IR absorptions at 2500-3550 $\,\mathrm{cm^{\text{-}1}}$ / $1000-1300\,\mathrm{cm^{\text{-}1}}$ and butene will not OR

But-2-ene will have an IR absorption at 1620-1720 and butan-2-ol will not [1]

Total [13]

Total Section B [70]